2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques. Efficient Ab Initio Modeling of Dielectric Screening in 2D van der Waals Materials: Including Phonons, Substrates, and Doping. Sung Bun Kang, Ki Chang Kwon, Kyoung Soon Choi, Rochelle Lee, Kootak Hong, Jun Min Suh, Min Ji Im, Amit Sanger, In Young Choi, Soo Young Kim, Jae Cheol Shin, Ho Won Jang, Kyoung Jin Choi. High-Performance p-BP/n-PdSe2 Near-Infrared Photodiodes with a Fast and Gate-Tunable Photoresponse. Van der Waals Heterostructure Devices with Dynamically Controlled Conduction Polarity and Multifunctionality. 2
Jeongwoo Park, Dohyeon Jeon, Yebin Kang, Young-Jun Yu. Direct Mapping of the Gate Response of a Multilayer WSe2/MoS2 Heterostructure with Locally Different Degrees of Charge Depletion. lateral heterojunctions via ultrafast microscopy mapping. The effect due to which light energy is converted to electric energy in certain semiconductor materials is known as photovoltaic effect. 2
Haijie Tan, Wenshuo Xu, Yuewen Sheng, Chit Siong Lau, Ye Fan, Qu Chen, Martin Tweedie, Xiaochen Wang, Yingqiu Zhou, Jamie H. Warner. Ferromagnetic half-metal properties of two dimensional vertical tellurene/VS2 heterostructure: A first-principles study. Photovoltaic Effect Voltage is generated in a solar cell by a process known as the ‘photovoltaic effect’ Sunlight is composed of photons, or particles of solar energy that contain various amounts of energy corresponding to the different wavelengths of the solar spectrum. Notice, Smithsonian Terms of Cited by. Avalanche photodetectors based on two-dimensional layered materials. http://pubs.acs.org/page/copyright/permissions.html, https://doi.org/10.1021/acs.chemrev.0c00505, https://doi.org/10.1021/acsphotonics.0c01200, https://doi.org/10.1021/acs.nanolett.0c01460, https://doi.org/10.1021/acs.jpclett.0c00780, https://doi.org/10.1021/acs.jpclett.0c00706, https://doi.org/10.1021/acs.nanolett.0c01089, https://doi.org/10.1021/acs.nanolett.0c00741, https://doi.org/10.1021/acs.nanolett.9b05162, https://doi.org/10.1021/acs.nanolett.9b04879, https://doi.org/10.1021/acs.nanolett.9b05212, https://doi.org/10.1021/acs.nanolett.9b04209, https://doi.org/10.1021/acs.nanolett.9b02824, https://doi.org/10.1021/acsphotonics.9b00534, https://doi.org/10.1021/acs.chemmater.9b01899, https://doi.org/10.1021/acs.jpclett.9b01192, https://doi.org/10.1021/acs.jpclett.9b01066, https://doi.org/10.1021/acs.nanolett.9b00070, https://doi.org/10.1021/acs.nanolett.8b05159, https://doi.org/10.1021/acs.chemmater.8b05348, https://doi.org/10.1021/acs.nanolett.8b03474, https://doi.org/10.1021/acs.jpclett.8b02622, https://doi.org/10.1021/acs.chemrev.7b00536, https://doi.org/10.1021/acs.jpclett.8b00903, https://doi.org/10.1021/acs.jpclett.8b00628, https://doi.org/10.1021/acs.nanolett.7b03221, https://doi.org/10.1021/acsphotonics.7b01103, https://doi.org/10.1021/acs.nanolett.7b03579, https://doi.org/10.1021/acs.nanolett.7b02776, https://doi.org/10.1021/acs.nanolett.7b03184, https://doi.org/10.1021/acs.nanolett.7b00627, https://doi.org/10.1021/acs.nanolett.7b01763, https://doi.org/10.1021/acs.chemmater.7b01383, https://doi.org/10.1021/acs.nanolett.7b00748, https://doi.org/10.1021/acs.chemrev.6b00558, https://doi.org/10.1021/acsphotonics.6b00778, https://doi.org/10.1021/acsphotonics.7b00194, https://doi.org/10.1021/acs.nanolett.6b04815, https://doi.org/10.1021/acs.nanolett.6b03398, https://doi.org/10.1021/acs.jpclett.6b02902, https://doi.org/10.1021/acs.nanolett.6b03704, https://doi.org/10.1021/acs.nanolett.6b02527, https://doi.org/10.1021/acsenergylett.6b00114, https://doi.org/10.1021/acs.nanolett.5b04538, https://doi.org/10.1021/acs.nanolett.5b05264, https://doi.org/10.1021/acs.nanolett.5b04141, https://doi.org/10.1021/acs.nanolett.5b03265, https://doi.org/10.1021/acs.nanolett.5b03291, https://doi.org/10.1021/acs.nanolett.5b01792, https://doi.org/10.1021/acs.nanolett.5b02012, https://doi.org/10.1021/acs.nanolett.5b00079, https://doi.org/10.1038/s41699-020-00194-w, https://doi.org/10.1016/j.physe.2020.114503, https://doi.org/10.1007/s12274-020-3122-0, https://doi.org/10.1007/s11467-020-1002-4, https://doi.org/10.1016/j.apsusc.2020.147480, https://doi.org/10.1016/j.nanoen.2020.105427, https://doi.org/10.1007/s12274-020-3154-5, https://doi.org/10.1038/s41377-020-00396-3, https://doi.org/10.1038/s41598-020-70127-6, https://doi.org/10.1038/s41699-020-0149-8, https://doi.org/10.1186/s11671-020-03342-9, https://doi.org/10.1038/s41377-020-00430-4, https://doi.org/10.1140/epjb/e2020-10490-9, https://doi.org/10.1016/j.mtphys.2020.100262, https://doi.org/10.1016/j.jallcom.2020.155890, https://doi.org/10.1016/j.apsusc.2020.147213, https://doi.org/10.1103/PhysRevResearch.2.043051, https://doi.org/10.1007/s10854-020-04069-0, https://doi.org/10.1016/j.jiec.2020.06.009, https://doi.org/10.1016/j.physe.2020.114207, https://doi.org/10.1007/s12274-020-3001-8, https://doi.org/10.1007/s40843-020-1353-3, https://doi.org/10.1007/s40843-020-1356-3, https://doi.org/10.1016/j.orgel.2020.105707, https://doi.org/10.35848/1882-0786/ab939d, https://doi.org/10.1002/9783527815968.ch8, https://doi.org/10.1007/s12274-020-2784-y, https://doi.org/10.1016/j.pmatsci.2020.100637, https://doi.org/10.1103/PhysRevB.101.195417, https://doi.org/10.1016/j.spmi.2020.106445, https://doi.org/10.1016/j.cej.2019.123330, https://doi.org/10.1016/j.physe.2019.113837, https://doi.org/10.1038/s41563-019-0601-3, https://doi.org/10.1007/s12274-020-2679-y, https://doi.org/10.1016/j.scib.2019.12.018, https://doi.org/10.1007/978-3-319-44680-6_143, https://doi.org/10.1007/978-981-15-6116-0_8, https://doi.org/10.1016/B978-0-08-102637-3.00005-X, https://doi.org/10.1016/B978-0-12-817678-8.00001-4, https://doi.org/10.1016/B978-0-12-817678-8.00002-6, https://doi.org/10.1016/B978-0-12-817678-8.00005-1, https://doi.org/10.1016/B978-0-12-817678-8.00006-3, https://doi.org/10.1016/B978-0-12-818386-1.00005-9, https://doi.org/10.1016/j.apsusc.2019.143894, https://doi.org/10.1016/j.commatsci.2019.109215, https://doi.org/10.1016/j.jallcom.2019.152049, https://doi.org/10.1016/j.jallcom.2019.152309, https://doi.org/10.1103/PhysRevApplied.13.014042, https://doi.org/10.1038/s41699-019-0092-8, https://doi.org/10.1103/PhysRevB.100.235411, https://doi.org/10.1103/PhysRevLett.123.247402, https://doi.org/10.1103/PhysRevX.9.041048, https://doi.org/10.1038/s41467-019-12707-3, https://doi.org/10.1038/s41467-019-13325-9, https://doi.org/10.1016/j.apsusc.2019.07.030, https://doi.org/10.1016/j.apmt.2019.07.004, https://doi.org/10.1016/j.solmat.2019.109936, https://doi.org/10.1103/PhysRevApplied.12.034023, https://doi.org/10.1103/PhysRevMaterials.3.095403, https://doi.org/10.1016/j.nanoen.2019.05.090, https://doi.org/10.1016/j.solidstatesciences.2019.05.021, https://doi.org/10.1109/ICPEDC47771.2019.9036549, https://doi.org/10.1103/PhysRevLett.123.027402, https://doi.org/10.1007/s11664-019-07141-6, https://doi.org/10.1016/j.nanoen.2019.02.032, https://doi.org/10.1016/j.physe.2019.01.019, https://doi.org/10.1016/j.ssc.2019.02.002, https://doi.org/10.1103/PhysRevB.99.205405, https://doi.org/10.1016/j.carbon.2019.01.008, https://doi.org/10.1016/j.jhazmat.2019.01.064, https://doi.org/10.1016/j.nanoen.2019.01.024, https://doi.org/10.1016/j.physleta.2019.01.060, https://doi.org/10.1016/j.solmat.2018.12.016, https://doi.org/10.1007/s11433-018-9294-4, https://doi.org/10.1016/j.snb.2018.12.062, https://doi.org/10.1007/s12274-018-2220-8, https://doi.org/10.1016/j.carbon.2018.10.038, https://doi.org/10.1007/978-3-030-21621-4_7, https://doi.org/10.1007/978-981-13-9045-6_1, https://doi.org/10.1016/B978-0-08-102577-2.00013-0, https://doi.org/10.1088/1674-1056/28/1/017103, https://doi.org/10.1038/s41467-018-03592-3, https://doi.org/10.1038/s41524-018-0129-0, https://doi.org/10.1038/s41598-018-28323-y, https://doi.org/10.1038/s41699-018-0049-3, https://doi.org/10.1038/s41699-018-0073-3, https://doi.org/10.1038/s41699-018-0074-2, https://doi.org/10.1038/s41699-018-0082-2, https://doi.org/10.1088/1674-1056/27/12/124202, https://doi.org/10.1038/s41565-018-0193-0, https://doi.org/10.1007/s40820-018-0212-6, https://doi.org/10.1016/j.jallcom.2018.06.356, https://doi.org/10.1007/s10854-018-9694-8, https://doi.org/10.1007/s12043-018-1624-z, https://doi.org/10.1103/PhysRevB.98.115427, https://doi.org/10.1016/j.nanoen.2018.06.014, https://doi.org/10.1088/1674-1056/27/8/087303, https://doi.org/10.1016/j.carbon.2018.02.104, https://doi.org/10.1016/j.nanoen.2018.04.034, https://doi.org/10.1038/s41928-018-0086-0, https://doi.org/10.1103/PhysRevB.97.245427, https://doi.org/10.1038/s41586-018-0129-8, https://doi.org/10.1103/PhysRevB.97.195452, https://doi.org/10.1007/s11467-017-0736-0, https://doi.org/10.1088/1674-1056/27/4/047302, https://doi.org/10.1016/j.nantod.2018.02.007, https://doi.org/10.1038/s41565-018-0082-6, https://doi.org/10.1134/S2075113318020314, https://doi.org/10.1007/978-3-319-50257-1_143-1, https://doi.org/10.1103/PhysRevX.8.011007, https://doi.org/10.1016/j.solmat.2017.08.012, https://doi.org/10.1038/s41467-017-02093-z, https://doi.org/10.1038/s41598-017-12704-w, https://doi.org/10.1038/s41699-017-0017-3, https://doi.org/10.1016/j.apmt.2017.04.007, https://doi.org/10.1016/j.spmi.2017.06.015, https://doi.org/10.1103/PhysRevMaterials.1.044001, https://doi.org/10.1109/ESSDERC.2017.8066647, https://doi.org/10.1016/j.flatc.2017.07.001, https://doi.org/10.1016/j.pmatsci.2017.06.002, https://doi.org/10.1016/j.scib.2017.08.007, https://doi.org/10.1016/j.mssp.2016.06.017, https://doi.org/10.1103/PhysRevB.95.245408, https://doi.org/10.1109/MNANO.2017.2676185, https://doi.org/10.3390/electronics6020043, https://doi.org/10.1007/s00339-017-0883-8, https://doi.org/10.1007/s12274-017-1442-5, https://doi.org/10.1016/j.coelec.2017.03.007, https://doi.org/10.1016/j.physe.2016.11.026, https://doi.org/10.1088/1674-1056/26/3/038504, https://doi.org/10.1088/1674-4926/38/3/031005, https://doi.org/10.1088/2053-1583/4/1/015026, https://doi.org/10.1103/PhysRevApplied.7.034011, https://doi.org/10.1103/PhysRevApplied.7.034034, https://doi.org/10.1103/PhysRevB.95.115429, https://doi.org/10.1016/j.ssc.2016.11.006, https://doi.org/10.1007/s12274-016-1247-y, https://doi.org/10.1016/j.nanoen.2016.10.022, https://doi.org/10.1088/2053-1583/3/4/045011, https://doi.org/10.1103/PhysRevB.94.241303, https://doi.org/10.3390/electronics5010013, https://doi.org/10.1038/natrevmats.2016.55, https://doi.org/10.1016/j.nantod.2016.08.009, https://doi.org/10.1103/PhysRevB.94.134306, https://doi.org/10.1088/0953-8984/28/36/364002, https://doi.org/10.1088/0953-8984/28/35/353002, https://doi.org/10.1038/natrevmats.2016.42, https://doi.org/10.1088/2053-1583/3/3/035004, https://doi.org/10.1016/j.mattod.2015.11.003, https://doi.org/10.1007/s12274-016-1034-9, https://doi.org/10.1088/2053-1583/3/2/025020, https://doi.org/10.1088/1674-4926/37/5/051001, https://doi.org/10.1109/TNANO.2016.2547183, https://doi.org/10.1109/IRPS.2016.7574543, https://doi.org/10.1088/1674-1056/25/3/037302, https://doi.org/10.1007/s12274-015-0932-6, https://doi.org/10.1103/PhysRevB.93.075111, https://doi.org/10.1007/978-3-319-31450-1_14, https://doi.org/10.1016/j.physrep.2015.10.003, https://doi.org/10.1364/CLEO_SI.2016.SF2E.1, https://doi.org/10.1016/j.surfrep.2015.10.001, https://doi.org/10.1016/j.nanoen.2015.10.023, https://doi.org/10.1103/PhysRevApplied.4.054004, https://doi.org/10.1103/PhysRevLett.115.187002, https://doi.org/10.1088/2053-1583/2/3/032003, https://doi.org/10.1088/0957-4484/26/34/344005, https://doi.org/10.1088/0957-4484/26/29/292001, https://doi.org/10.1109/NANO.2015.7388678, https://doi.org/10.1103/PhysRevB.91.195416, https://doi.org/10.1016/j.nanoen.2015.03.023, https://doi.org/10.1016/j.nantod.2015.01.007, https://doi.org/10.1016/j.jmat.2015.03.003, https://doi.org/10.1016/j.progsurf.2014.11.001, https://doi.org/10.1103/PhysRevLett.114.066803, https://doi.org/10.1364/CLEO_QELS.2015.FTh3E.2, https://doi.org/10.1109/IEDM.2014.7046990, https://doi.org/10.1088/1367-2630/16/10/105011. Jinbo Pang, Alicja Bachmatiuk, Yin Yin, Barbara Trzebicka, Liang Zhao, Lei Fu, Rafael G. Mendes, Thomas Gemming, Zhongfan Liu, Mark H. Rummeli. 2
Manal M. Y. Ji-Hoon Ahn, Myoung-Jae Lee, Hoseok Heo, Ji Ho Sung, Kyungwook Kim, Hyein Hwang, and Moon-Ho Jo . Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. Shih-Hsien Yang, You-Teng Yao, Yong Xu, Che-Yi Lin, Yuan-Ming Chang, Yuen-Wuu Suen, Huabin Sun, Chen-Hsin Lien, Wenwu Li, Yen-Fu Lin. The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics. Ke Zhang, Yang Wei, Jin Zhang, He Ma, Xinhe Yang, Gaotian Lu, Kenan Zhang, Qunqing Li, Kaili Jiang, Shoushan Fan. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative thin sheets. By using the same derivation, an equation for the resistance around Voc is obtained. Amir Ghobadi, Turkan Gamze Ulusoy Ghobadi, Ali Kemal Okyay, Ekmel Ozbay. Optical properties of GaS-Ca(OH)
2
Electric field tuning of band offsets in transition metal dichalcogenides. Khang June Lee, Cheolmin Park, Hyeok Jun Jin, Gwang Hyuk Shin, Sung-Yool Choi. Photovoltaic cells are an integral part of solar-electric energy systems, which are becoming increasingly important as alternative sources of utility power. = !1.8 eV and 9!!" Yangyang Zhan, Zhibin Shao, Tianhao Jiang, Jing Ye, Xiaofeng Wu, Bingchang Zhang, Ke Ding, Di Wu, Jiansheng Jie. Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. Pengfei Yang, Zhepeng Zhang, Jianping Shi, Shaolong Jiang, Yanfeng Zhang. Heterostructures. Arvind Shankar Kumar, Mingyuan Wang, Yancheng Li, Ryuji Fujita. Stephanie Bettis Homan, Vinod K. Sangwan, Itamar Balla, Hadallia Bergeron, Emily A. Weiss, and Mark C. Hersam . 2
Amir Muhammad Afzal, Ghulam Dastgeer, Muhammad Zahir Iqbal, Praveen Gautam. Xiaofeng Qian, Yangyang Wang, Wenbin Li, Jing Lu, Ju Li. Photodetector. Novel Optoelectronic Devices: Transition-Metal-Dichalcogenide-Based 2D Heterostructures. Science China Physics, Mechanics & Astronomy. Investigation of Band-Offsets at Monolayer–Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy. Xiang-Yang Liu, Xiao-Ying Xie, Wei-Hai Fang. 2
Yingqiu Zhou, Wenshuo Xu, Yuewen Sheng, Hefu Huang, Qianyang Zhang, Linlin Hou, Viktoryia Shautsova. van der Waals junction for spintronic applications.
A transparent solar cell based on a mechanically exfoliated GaTe and InGaZnO p–n heterojunction. of metals on natural P-type MoS2 was undertaken. John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross, Kyle L. Seyler, Wang Yao, Xiaodong Xu. /i-MoS
/Graphene and MX
Here we show that, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 times, because of efficient field concentration in the area of a p-n junction. 2
-based heterojunctions. Through a proper understanding and design of source/drain contacts and the right choice of no. Nan Zhou, Renyan Wang, Xing Zhou, Hongyue Song, Xing Xiong, Yao Ding, Jingtao Lü, Lin Gan, Tianyou Zhai. The 20-nm ultrathin BFO layers were deposited on the fluorine-doped tin oxide (FTO) glass substrates by the chemical solution deposition method. https://cris.vub.be/en/publications/construction-of-state-diagrams-for-organic-photovoltaic-systems-by-rapid-heatcool-dsc(cae86d26-e8f0-4233-903b-89bc40736649).html Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Kun Zhang, Xin Fang, Yilun Wang, Yi Wan, Qingjun Song, Wenhao Zhai, Yanping Li, Guangzhao Ran, Yu Ye, and Lun Dai . Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors. Functional two/three-dimensional assembly of monolayer WS
Photovoltaic effect is exhibited by a photodiode in both forward and reverse bias. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. Photovoltaics: Advances in First Principles Modeling – Overview. Large-Area 2D/3D MoS
Synthesis, properties and applications of 2D non-graphene materials. Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures. based Schottky junction employing ultra-low and high resistive metal contacts. Yu Li Huang, Yu Jie Zheng, Zhibo Song, Dongzhi Chi, Andrew T. S. Wee, Su Ying Quek. and MoS
Jung Ho Kim, Seok Joon Yun, Hyun Seok Lee, Jiong Zhao, Houcine Bouzid, Young Hee Lee. However, the low responsivity of graphene-based photodetectors compared with traditional III-V-based ones is a potential drawback. 2
-
Sidi Fan, Quoc An Vu, Sanghyub Lee, Thanh Luan Phan, Gyeongtak Han, Young-Min Kim, Woo Jong Yu. Layer-Coupled States Facilitate Ultrafast Charge Transfer in a Transition Metal Dichalcogenide Trilayer Heterostructure. in the photoresponse spectra are related to indirect transitions in MoS2, agreeing with recent band calcns. 2
p–n Homojunctions Defined by Ferroelectric Polarization. Heterojunction. p
Dinh Hoa Luong, Hyun Seok Lee, Guru Prakash Neupane, Shrawan Roy, Ganesh Ghimire, Jin Hee Lee, Quoc An Vu, Young Hee Lee. Kezerashvili, Z.S. Guillaume Froehlicher, Etienne Lorchat, Stéphane Berciaud. Recent Advances in Two-Dimensional Materials beyond Graphene. Band gap reduction in van der Waals layered 2D materials
/h-BN/WSe
Underneath lie photovoltaic cells the size of small bathroom tiles, soldered together like a chessboard. , X
Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. Henan Li, Yumeng Shi, Ming-Hui Chiu, Lain-Jong Li. Gabriel C. Constantinescu, Nicholas D. M. Hine. The discovery of the photovoltaic effect in a silicon p–n junction by Chapin, Fuller, and Pearson heralded the era of photovoltaics. heterostructure device with a fast photoresponse. Heterostructures with Thermally Stable Exciton and Intriguing Electrical Transport Behaviors. A Van Der Waals Homojunction: Ideal p-n Diode Behavior in MoSe
O Through Selective Oxidation of Monolayer WS
3
A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, A. I. Tartakovskii. 6. 2
Photovoltaic materials include silicon (most prominent), semi-conductor compounds (thin-film) and combinations thereof in multi-junction cells. Jaewoo Shim, Seyong Oh, Dong-Ho Kang, Seo-Hyeon Jo, Muhammad Hasnain Ali, Woo-Young Choi, Keun Heo, Jaeho Jeon, Sungjoo Lee, Minwoo Kim, Young Jae Song, Jin-Hong Park. Peng Luo, Fakun Wang, Jingyu Qu, Kailang Liu, Xiaozong Hu, Kewei Liu, Tianyou Zhai. Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature. Synthesis of 2D Layered BiI
/single layer MoS
buildings a re not much, so shading effect is no t so problematic [14]. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity. ‐WS
Solvent engineering for strong photoluminescence enhancement of monolayer molybdenum disulfide in redox-active molecular treatment. 2
2
Xufan Li, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang, Wu Zhou, Sokrates T. Pantelides, Miaofang Chi, Ivan Kravchenko, Jason Fowlkes, Christopher M. Rouleau, David B. Geohegan, Kai Xiao. Joon Young Kwak, Jeonghyun Hwang, Brian Calderon, Hussain Alsalman, Michael G. Spencer. Media in category "Photovoltaic power diagrams" The following 95 files are in this category, out of 95 total. Sikandar Aftab, Samiya, Hafiz Mansoor Ul Haq, Saqlain Yousuf, Muhammad Usman Khan, Zaheer Ahmed, Jamal Aziz, Muhammad Waqas Iqbal, Atteq ur Rehman, Muhammad Zahir Iqbal. Piezotronic effect on interfacial charge modulation in mixed-dimensional Van der Waals heterostructure for ultrasensitive flexible photodetectors. Illarionov, M. Waltl, M. M. Furchi, T. Mueller, T. Grasser. Anisotropic transport in 1T′ monolayer MoS
Guoyang Cao, Yidan An, Qiaoliang Bao, Xiaofeng Li. Nonvolatile Programmable WSe
Current Rectification through Vertical Heterojunctions between Two Single-Layer Dichalcogenides (WSe2|MoS2pn-Junctions). Devices and applications of van der Waals heterostructures. Electric field effects on the electronic structures of MoS2/antimonene van der Waals heterostructure. Huasong Qin, Qing-Xiang Pei, Yilun Liu, Yong-Wei Zhang. Thermodynamically Stable Synthesis of Large-Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n-n Heterojunction Devices. Le Huang, MianZeng Zhong, HuiXiong Deng, Bo Li, ZhongMing Wei, JingBo Li, SuHuai Wei. Nanocavity absorption enhancement for two-dimensional material monolayer systems. Some PV cells can also convert infrared (IR) or ultraviolet (UV) radiation into DC electricity. To understand the physics behind these devices, we need to further study crystallography in semiconductors. 2
Edge induced band bending in van der Waals heterojunctions: A first principle study. Electrical and photovoltaic characteristics of MoS
Jian Gao, Young Duck Kim, Liangbo Liang, Juan Carlos Idrobo, Phil Chow, Jiawei Tan, Baichang Li, Lu Li, Bobby G. Sumpter, Toh-Ming Lu, Vincent Meunier, James Hone, Nikhil Koratkar. Hao Jin, Vincent Michaud-Rioux, Zhi-Rui Gong, Langhui Wan, Yadong Wei, Hong Guo. Intercalation in two-dimensional transition metal chalcogenides. Reliability of single-layer MoS
Night After Night Tv Show, Cloak Meaning In Tagalog, Dual Inverter Vs Triple Inverter Ac, Engineering Worksheet Pdf, Buckwheat Seed Amazon, Bcm School Shastri Nagar, Ludhiana Admission Fee, Kidkraft Study Desk With Chair, How To Answer How Are You Doing, Another Level Nightcore, Purple Rain Album Cover,